167 research outputs found

    Combining Total Variation and Nonlocal Means Regularization for Edge Preserving Image Deconvolution

    Get PDF
    We propose a new edge preserving image deconvolution model by combining total variation and nonlocal means regularization. Natural images exhibit an high degree of redundancy. Using this redundancy, the nonlocal means regularization strategy is a good technique for detail preserving image restoration. In order to further improve the visual quality of the nonlocal means based algorithm, total variation is introduced to the model to better preserve edges. Then an efficient alternating minimization procedure is used to solve the model. Numerical experiments illustrate the effectiveness of the proposed algorithm

    A New Noninterior Continuation Method for Solving a System of Equalities and Inequalities

    Get PDF
    By using slack variables and minimum function, we first reformulate the system of equalities and inequalities as a system of nonsmooth equations, and, using smoothing technique, we construct the smooth operator. A new noninterior continuation method is proposed to solve the system of smooth equations. It shows that any accumulation point of the iteration sequence generated by our algorithm is a solution of the system of equalities and inequalities. Some numerical experiments show the feasibility and efficiency of the algorithm

    catena-Poly[[[triaqua­copper(II)]-μ-pyridine-2,3-dicarboxyl­ato-κ3 N,O 2:O 3] monohydrate]

    Get PDF
    In the title compound, {[Cu(C7H3NO4)(H2O)3]·H2O}n, the CuII ion is bonded to three water mol­ecules, one N,O-bidentate pyridine-2,3-dicarboxyl­ate dianion and one O-bonded symmetry-generated dianion, resulting in a distorted CuNO5 octa­hedral geometry. The bridging ligand results in an infinite chain. A network of O—H⋯O hydrogen bonds helps to establish the crystal structure

    Hsa_circ_0026344 suppresses gastric cancer progression via modulating the miR-1290/FBP2 axis

    Get PDF
    Background. Circular RNAs (circRNAs) are a novel type of noncoding RNAs and play important roles in tumorigenesis, including gastric cancer (GC). However, the functions of most circRNAs remain poorly understood. In our study, we mainly learn the influence of hsa_circ_0026344 (circ_0026344) in GC progression. Methods. Circ_0026344, miR-1290 and Fructose1,6-bisphosphatase 2 (FBP2) expression was determined by quantitative real-time polymerase chain reaction (qRT-PCR). GC cell proliferation, migration, and invasion were detected by colony formation, 5-ethynyl2’-deoxyuridine (EdU), and transwell assays, respectively. The interaction between circ_0026344 and miR-1290 complex was evaluated by RNA pull-down assay. The interaction of miR-1290 with circ_0026344 or FBP2 was detected using dual-luciferase reporter assay. A xenograft model was established to determine the effect of circ_0026344 on GC tumor growth in vivo. Results. Circ_0026344 expression was dramatically decreased in GC cells and tissues. Circ_0026344 overexpression inhibited GC cell proliferation, migration and invasion. MiR-1290 was predicted as a target of circ_0026344 and miR-1290 overexpression attenuated the anti-tumor effect of circ_0026344 on GC cells. Furthermore, we predicted FBP2 as the target of miR1290. FBP2 knockdown reversed the effects of circ_0026344 knockdown on GC cell malignant behaviors. Functional analysis showed that circ_0026344 upregulated FBP2 expression via miR1290. Additionally, in vivo studies demonstrated that circ_0026344 suppressed GC tumor progression. Conclusion. In conclusion, circ_0026344 inhibited GC cell proliferation via the miR-1290/FBP2 axis, which might provide a new therapeutic target for GC patients

    Kerker-Type Positional Disorder Immune Metasurfaces

    Full text link
    Metasurfaces that can work without the rigorous periodic arrangement of meta-atoms are highly desired by practical optical micro-nano devices. In this work, we proposed two kinds of Kerker-type metasurfaces possessing positional disorder immunity. The metasurfaces are composed of two different core-shell cylinders satisfying the first and second Kerker conditions, respectively. Even with large positional disorder perturbation of the meta-atoms, the metasurfaces can still maintain the same excellent performances as periodic ones, such as the total transmission and magnetic mirror responses. This disorder immunity is due to the unidirectional forward and backward scatterings of a single core-shell cylinder leading to very weak lateral couplings between neighboring cylinders thus rarely affecting the multiple scatterings in the forward or backward direction. In contrast, the dominant response of the disordered non-Kerker-type metasurface decreases significantly. Our findings provide a new idea for designing robust metasurfaces and extend the scope of metasurface applications in sensing and communication under complex practical circumstances.Comment: 18 pages, 9 figure

    Online Camera-to-ground Calibration for Autonomous Driving

    Full text link
    Online camera-to-ground calibration is to generate a non-rigid body transformation between the camera and the road surface in a real-time manner. Existing solutions utilize static calibration, suffering from environmental variations such as tire pressure changes, vehicle loading volume variations, and road surface diversity. Other online solutions exploit the usage of road elements or photometric consistency between overlapping views across images, which require continuous detection of specific targets on the road or assistance with multiple cameras to facilitate calibration. In our work, we propose an online monocular camera-to-ground calibration solution that does not utilize any specific targets while driving. We perform a coarse-to-fine approach for ground feature extraction through wheel odometry and estimate the camera-to-ground calibration parameters through a sliding-window-based factor graph optimization. Considering the non-rigid transformation of camera-to-ground while driving, we provide metrics to quantify calibration performance and stopping criteria to report/broadcast our satisfying calibration results. Extensive experiments using real-world data demonstrate that our algorithm is effective and outperforms state-of-the-art techniques

    Diazido­bis(2,2′-biimidazole)iron(II)

    Get PDF
    In the title compound, [Fe(N3)2(C6H6N4)2], the Fe atom is bonded to two azide ions located in axial positions and to two equatorially positioned bidentate biimidazole ligands, forming a slightly distorterd octa­hedron. The non-H atoms of the equatorial plane are coplanar, with a mean deviation of 0.0355 (2) Å. The FeII cation lies on an inversion centre. Thus, the asymmetric unit comprises one half-mol­ecule

    Tris[2-(propyl­imino­meth­yl)phenolato-κ2 N,O]iron(III)

    Get PDF
    The title compound, [Fe(C10H12NO)3], is isostructural with its CoIII-containing analogue. The FeIII cation is chelated by three Schiff base ligands via three N and three O atoms, and exhibits a slightly distorted octa­hedral geometry. The longest Fe—O and Fe—N bonds lie trans to each other and may be regarded as axial bonds, while the equatorial plane contains two mutually trans O and two trans N atoms

    Bis{μ-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato}bis­[(thio­cyanato-κN)iron(III)]

    Get PDF
    The title compound, [Fe2(C16H14N2O2)2(NCS)2], is isostructural with the MnIII-containing analogue. Each FeIII atom is chelated by a tetra­dentate 2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolate ligand and by the N atom of a thio­cyanate anion, in a square-pyramidal arrangement. The complex mol­ecules form centrosymmetric dimers, with an Fe—O contact of 2.549 (3) Å, trans to each thio­cyanate anion, completing a distorted octa­hedral coordination geometry
    corecore